Accueil > Actualités > La jeune géante qui s’est fait une place au soleil

La jeune géante qui s’est fait une place au soleil

Depuis 20 ans, les planètes géantes qu’on nomme Jupiters chauds défient les astronomes. Comment ces astres atteignent-ils des orbites 100 fois plus serrées que celle de Jupiter autour du Soleil? Une équipe internationale vient d’annoncer1 la découverte d’un très jeune Jupiter chaud au voisinage immédiat d’un soleil d’à peine 2 millions d’années - l’équivalent stellaire d’un nourrisson d’une semaine. Cette toute première preuve que les Jupiters chauds apparaissent dès les origines constitue un progrès majeur dans notre compréhension de la formation et de l’évolution des systèmes planétaires.

Sous embargo jusqu’au 20 Juin 2016 à 17:00 Heure de Paris

Pour faire cette étude, l’équipe a scruté une étoile d’à peine 2 millions d’années, baptisée V830 Tau, au coeur de la pouponnière stellaire du Taureau à 430 années-lumière de la Terre. Après un mois et demi d’observations, l’équipe a détecté une variation régulière de la vitesse de l’étoile, révélant la présence d’une planète presque aussi massive que Jupiter sur une orbite 20 fois plus serrée que celle de la Terre autour du Soleil. «Notre découverte prouve pour la première fois que les Jupiters chauds apparaissent très tôt lors de la phase de formation, et ont donc un impact majeur sur l’architecture des systèmes planétaires» souligne JF Donati, directeur de recherche CNRS à l’IRAP2/ OMP et premier auteur de l’étude publiée cette semaine dans le journal Nature.

Dans le système solaire, les petites planètes rocheuses comme la Terre orbitent près du Soleil alors que les géantes gazeuses comme Jupiter et Saturne patrouillent bien plus loin. «La découverte il y a 20 ans de planètes géantes côtoyant leur étoile a sidéré la communauté et révolutionné le domaine» rappelle C. Moutou, directrice de recherche CNRS au Télescope Canada-France-Hawaii3 (TCFH) et coauteur de cette nouvelle étude. Les travaux théoriques nous apprennent que ces planètes ne peuvent se former que dans les confins glacés du disque protoplanétaire donnant naissance à l’étoile centrale et à son cortège de planètes. Certaines d’entre elles migrent vers l’étoile sans y tomber, devenant dès lors des Jupiters chauds. 

«Nos modèles théoriques de formation planétaire ne sont toutefois pas encore assez précis pour prédire si cette migration se produit tôt dans la vie des géantes gazeuses, alors qu’elles se nourrissent encore au sein du disque primordial, ou bien plus tard lorsque les nombreuses planètes formées interagissent et propulsent certaines d’entre elles au voisinage immédiat de l’étoile » explique C. Baruteau, chargé de recherche CNRS à l’IRAP / OMP et coauteur de l’étude. «Avec cette découverte qui démontre que le premier de ces processus est bien à l’oeuvre, notre compréhension de la migration des planètes, et plus généralement de la formation des systèmes planétaires, progresse d’un bond ». 

Parmi les Jupiters chauds connus, certains possèdent une orbite inclinée, voire inversée, suggérant qu’ils ont été précipités vers l’étoile par d’ombrageuses voisines; d’autres se contentent d’évoluer dans le plan équatorial de l’étoile, évoquant une ancienne migration moins brutale au sein même du disque. Alors que ce second processus ne prend que quelques millions d’années, le premier est au moins cent fois plus lent àopérer. «Au contraire des Jupiters chauds dont l’orbite inclinée pointe vers une origine violente, la jeune géante que nous venons de détecter fournit la preuve que la migration au sein du disque est également à l’oeuvre» précise A. Collier Cameron, coauteur et professeur à l’Université de St-Andrews en Ecosse.

Pour cette découverte, l’équipe a utilisé les spectropolarimètres jumeaux ESPaDOnS et Narval, conçus et construits à l’IRAP / OMP. Installé au TCFH au sommet du Maunakea, un volcan endormi de la grande île de l’archipel d’Hawaii, ESPaDOnS est alimenté par fibres optiques, soit depuis le TCFH lui même, soitdepuis son voisin, le télescope Gemini, via un lien fibré de 300m baptisé GRACES. Narval est monté quant à lui au télescope Bernard Lyot4(TBL) au sommet du Pic du Midi. «L’utilisation combinée des trois télescopes s’est avérée essentielle pour obtenir la continuité requise dans le suivi de V830Tau » mentionne L. Malo, coauteure et astronome au TCFH impliquée dans la coordination des observations. 

« Avec SPIRou et SPIP, les spectropolarimètres infrarouges de nouvelle génération construits par l’équipe pour le TCFH et le TBL et dont la mise en service est prévue en 2017 et 2019, les performances seront encore largement améliorées, ce qui nous permettra d’étudier la formation des nouveaux mondes avec une sensibilité sans précédent », ajoute L. Yu, coauteure et doctorante en exoplanétologie à l’IRAP / OMP.

--------------------------------------------------------

1 L’étude décrivant la découverte, publiée dans le journal Nature, est accessible depuis ce lien ( anglais)

2 L’ IRAP (Institut de Recherche en Astrophysique et Planétologie) est un laboratoire de l’OMP (Observatoire Midi-Pyrénées) sous la co- tutelle du CNRS / INSU (Centre National de la Recherche Scientifique / Institut National des Sciences de l’Univers) et de l’UFTMiP / UPS (Université Fédérale Toulouse Midi-Pyrénées / Université Paul Sabatier)

3 Le TCFH est opéré par le Centre national de recherches du Canada (CNRC), le CNRS / INSU en France et l’Université d’Hawaii

4 Le TBL est opéré par l’IRAP / OMP, le CNRS / INSU et l’UFTMiP / UPS 

Contacts :

Jean-François Donati, IRAP / OMP, 1er auteur, t: 0561332917, e: jean-francois.donati@irap.omp.eu Claire Moutou, TCFH, 2eme auteure, t: +1-8088857944, e: moutou@cfht.hawaii.edu
Clément Baruteau, IRAP / OMP, coauteur, t: 0561334701, e: clement.baruteau@irap.omp.eu Louise Yu, IRAP / OMP, coauteure, e: louise.yu@irap.omp.eu

Jérome Bouvier, IPAG / OSUG, coauteur, t: 0476514790, e: jerome.bouvier@univ-grenoble-alpes.fr Pascal Petit, IRAP / OMP, coauteur, t: 0561332828, e: pascal.petit@irap.omp.eu 

PR-1
PR-2
PR-3